
WebSphere MQ 101WebSphere MQ 101
Introduction to the World’s Leading Messaging Introduction to the World’s Leading Messaging
ProviderProvider

Simon Gormley (Simon Gormley (sgormley@uk.ibm.comsgormley@uk.ibm.com))
IBM Hursley ParkIBM Hursley Park

August 9August 9thth, 2011, 2011
Session 9359Session 9359

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com

Agenda

• Introduction
• Fundamentals
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

Business Challenges (1) - Dispersed
Business Logic

Over time, separate organisational units build their own
pieces of business logic…

…with applications developed on many different platforms.

• Connecting these and managing
them together can save a lot of time
and money

• WebSphere MQ can help achieve
this.

Business Challenges (1) - Dispersed business
logic

• For example; Payroll have a program to run to add a one-time
payment to an employee’s pay packet

• HR have a program to calculate an employee’s performance bonus
based on her annual review score and her business unit’s
performance

• Sales have a program to calculate annual review scores
• Research have a program to calculate annual review scores
• Etc.

• These applications may all run using different hardware and OS and
be written in different languages. Being able to connect these together
reduces costs and time.

Business Challenges (2) - Process
Resilience

As systems become more integrated…

…the reliance on and cost of failure of a process increases

• Removing dependencies and
introducing redundancy reduces the
risk of a failure

• WebSphere MQ can help achieve this.

Business Challenges (2) - Process Resilience

• Business processes need to provide a reliable always-on
experience to users. For example, revenue or trust is lost if
an order can’t be taken or an error occurs. This means
updates need to be transported and processed reliably and
processes need to continue even if one or more data
sources is unavailable.

• WebSphere MQ can help decouple each component in a
process from the others. This reduces the number of
dependencies at each stage and allows redundancy to be
introduced easily.

Business Challenges (3) - Process
Scalability

Many applications and processes start out on a single
system…

…as business grows, a single system is no longer sufficient
to cope with demand

• A scaleable architecture enables
the capacity to be incrementally
grown to meet increasing workloads

• WebSphere MQ can help achieve
this.

Business Challenges (3) - Process Scalability

• Scalability needs to be designed in, and can add
significantly to the complexity, i.e. running an application
across multiple systems can be orders of magnitude
harder then running on a single system.

• WebSphere MQ provides the reliable communications and
administration tools needed to spread or migrate
applications and processes to multiple systems.

Business Challenges (4) - Process
Flexibility

A process originally designed for one purpose…

…needs to change to meet new requirements

• Being able to respond rapidly to
internal and external challenges gives
a competitive advantage

• WebSphere MQ can help achieve this.

Business Challenges (4) - Process Flexibility

• Requirements may change for a number or reasons;
organisational changes, market changes or changes in
technology. Being able to adapt quickly gives competitive
advantage.

• WebSphere MQ can help to improve the responsiveness
of your business by allowing individual components of your
business logic to be seamlessly replaced without
alterations to the rest of the process.

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

• Messages can be created from any source:
• Data, Messages, Events, Files, Web service requests /

responses

• Messages are moved asynchronously using:
• Queues [Point-to-Point]
• Topics [Publish/Subscribe]

X

Y

B

A

WebSphere MQ – Key Concepts (1)

WebSphere MQ – Key Concepts (1)

• The physical world is frequently organised in queues. Consider for a moment just how
many queues you have been involved in today alone. We queue at the Post Office,
Supermarket checkout, at traffic lights. We write shopping lists and to do lists. We use
the postal service, voice mail, and of course, the ever present e-mail.

• The truth is that queuing is a natural model that allows us to function efficiently. Perhaps
not surprisingly therefore it turns out that it is also a very useful model in which to
organise our applications.

• Instead of Application A talking synchronously to Application B have Application A 'send
a message' to a queue which Application B will read.

• Messages can be of any form, the content is not restricted, so they could contain:
• Data in general
• Data packaged as messages
• It might be notification events
• Files being moved in a managed FT application
• SOAP messages for invoking services

WebSphere MQ – Key Concepts (2)

• Publish Subscribe
• Essentially….

------- requesting information on a given topic
____ providing information on a given topic

H

A
X

Z

E

L

FI

N

WebSphere MQ – Key Concepts (2)
Our daily life is full of examples of requests for information on a given topic and providing

information about a given topic.

Let us consider an example:-

You have installed a piece of software on your computer and you would like to know
when there are updates available for it ….the software provider has a service to
inform you of updates when they occur.

• You ask the software provider to let you know when there are updates available for
the software (a topic) in which you are interested (a subscription)

• The software provider informs you when updates become available (a publication)

• The software provider can use a message to provide this information

• You can provide a destination (queue) to which the information is published

WebSphere MQ – Key Concepts (3)

• Reliability
• Assured message delivery
• Performance

• Ubiquitous
• Breadth of support for platforms,

programming languages and API
• Loose application coupling

• Location transparency
• Time independence
• Data transparency (with

WebSphere Message Broker)
• Platform independence

• Scalability
• Incremental growth

• Rapid development
• Reduce Complexity
• Ease of use

Q Manager Q Manager

 Message

 Queue

Applicati
on Z

Applicatio
n A

 Channels

WebSphere MQ – Key Concepts (3)
• What WebSphere MQ (aka MQSeries) did was to recognise that for the queuing model to be successful and

applicable to a wide range of applications that it must achieve the following major goals :-
• First it must be totally reliable. A message put to an WebSphere MQ queue is as safe as a record written to a

database. e-mail just isn't reliable enough
• Secondly it should be available everywhere, and support as wide a range of platforms, programming languages and

common API as possible. The postal service would be severely restricted if it only covered the local city.
• The WebSphere MQ base product is available on all major platforms such as Windows, AIX, HP-UX, Solaris,

i5/OS, z/OS and many others (In all 80+ platform configurations are supported). Programming is performed using
simple defacto API, such as the MQI which is available with only around a dozen verbs or via standards based
interfaces such as JMS.

• Thirdly, the goals of MQ from an application standpoint is to enable as loose coupling as possible. This is achieved by
providing :-

• Location Transparency: A sending application need not know where the receiving application is nor have any
knowledge of the network or communications .

• Time Independence{ It is not necessary for both applications to be up and running at the same time
(asynchronous)

• Platform Independence: A sending application need not know what type of platform the receiving application is
running on.

• Data transparency: With the advent of Brokers and message translation it is not even necessary for the two
applications to exchange messages in a shared format.

• Fourthly, it must be possible to incrementally add applications and capacity
• Finally, Reliable distributing computing is difficult, complex and error prone. Providing simple API and the right tooling

makes a significant difference to the ease of application development and administration.

WebSphere MQ is not a substitute for…!

• Well written applications

• Robust network

• Good operational procedures

• Well managed systems

• Intentionally left blank

Header User Data

A Series of Message Attributes
Understood and augmented by the Queue Manager
•Message Id
•Correlation Id
•Routing information
•Reply routing information
•Message priority
•Message codepage/encoding
•Message format
....etc.

•Any sequence of bytes
•Private to the sending and receiving programs
•Not meaningful to the Queue Manager

•Message Types
 -Persistent ... recoverable
 -Non Persistent

•Up to 100MB message length

Message = Header + User Properties + User Data

What is a Message?

User Properties

•User Properties require WMQ V7
•Emulated for JMS in older versions of WMQ

•Arbitrary properties
•For example, this is a “green” message

What is a Message?

• A message in WebSphere MQ is merely a sequence of bytes in a buffer of a give length.
 The current products support up to 100MB in a single message although the vast
majority of messages are in the order of a few thousand bytes.

• Messages have various attributes associated with them such as their identifier, their
priority and their format. Each application is free to define its own format for messages
although there are a number of predefined formats. One common format for messages
is XML for example.

• A key attribute of a message is its persistence. A message is either persistent or non-
persistent. This attribute tells the Queue Manager how important the message is.

• Persistent: persistent messages are written to disk and are logged. The Queue
Manager will ensure that the messages are recovered in the case of a system crash
or network failure. These messages are delivered once and only once to the
receiving applications.

• Non-persistent: The messages are identified by the application as non-critical. The
Queue Manager will make every effort to deliver these messages but since they are
not necessarily written to disk they will be lost in the case of a system crash or
network failure. Clearly with no disk IO involved these messages are much faster
than persistent ones.

What is a Queue?

• A queue holds messages
• Various Queue Types

• Local, Alias, Remote, Model

• Queue creation
• Predefined
• Dynamically defined

• Message Access
• FIFO
• Priority
• Direct
• Selected by Property (V7)
• Destructive & non-destructive access
• Transacted

• Parallel access by
applications
• Managed by the queue

manager

What is a Queue?

A Queue is a named object (up to 48 characters) which is defined with a queue type.

Local Only queue type which can actually hold messages

Alias A queue name which 'points' to another queue

Remote A queue which 'points' to a queue on a remote machine

Model A template definition which when opened will create a local queue

with a new name

Applications open queues, by name, and can either put or get messages to/from the queue. Messages
can be got from the queue either in FIFO order, by priority or directly using a message identifier or
correlation identifier.

As many applications as required can open a queue either for putting or for getting making it easy to
have single server responding to many clients or even n servers responding to many clients.

A key feature of WebSphere MQ is its transaction support. Messages can be both put and got from
queues in a transaction. The transaction can be just local, involving just messaging operations or
global involving other resource managers such as a database. A classic example, is an application
which gets a message, updates a database and sends a reply message all within a single
transaction. If there is a failure before the transaction commits, for example a machine crash, both
the database update and the received message will be rolled back. On machine restart the request
message will still be on the queue allowing the application to reprocess the request.

What is a Topic?

• A Topic can be
• a) Topic Object

• is predefined
• allows you to assign specific non default information to a topics
• is an access control point

• b) Topic String
• is a character string
• can be made up of any characters
• is case sensitive

• /fruit/apples
• describes the information to be associated with it

/fruit

/fruit/apples

What is a Topic?
• A topic is a character string that describes the nature of the data that is

published in a publish/subscribe system.

• Topics are key to the successful delivery of messages in a publish/subscribe
system. Instead of including a specific destination address in each message, a
publisher assigns a topic to the message. The queue manager matches the
topic with a list of subscribers who have subscribed to that topic, and delivers
the message to each of those subscribers.

• Note that a publisher can control which subscribers can receive a publication
by choosing carefully the topic that is specified in the message.

• Topics can be defined by a system administrator using MQSC or PCF
commands. (Topic objects)

• However, the topic of a message does not have to be defined before a
publisher can use it; a topic is created when it is specified in a publication or
subscription for the first time.

What is a Topic Tree?

• Each topic defined is a node in a topic tree
• Topic Nodes in the topic tree can be

• A topic object defined by administrators
• created dynamically

• Topic Nodes contain Topic Strings

/fruit/apples

/fruit

/fruit/bananas /fruit/oranges

/fruit

What is a Topic Tree?

• Each topic that you define is an element, or node, in the topic tree.
The topic tree can either be empty to start with or contain topics that
have been defined by a system administrator using MQSC or PCF
commands. You can define a new topic either by using these create
topic commands or by specifying the topic for the first time in a
publication or subscription.

• Although you can use any character string to define a topic's topic
string, choose a topic string that fits into a hierarchical tree structure.
Thoughtful design of topic stings and topic trees can help you with the
following operations:
• Subscribing to multiple topics.
• Establishing security policies.

• Although you can construct a topic tree as a flat, linear structure, it is
better to build a topic tree in a hierarchical structure with one or more
root topics.

A

B E

D

F

Pub/Sub
Broker

Data

Data

Topic A

Topic B

Topic A,B

Topic B

C

Subscription

(re-) Publication

Data

Publish/Subscribe in Action

Topic A

What is Publish/Subscribe?

• In this environment, the receiving applications notify an intermediary of their interest in
particular sets of information. The receiving (or subscribing) application provides a
subject and a queue where messages matching this subject may be delivered.

• The sending (publishing) applications generate information, together with a subject
name, and sends the information to the pub/sub engine. The pub/sub engine contains a
matching service which determines the subscribing applications interested in receiving
this information.

• Note that the publish/subscribe model provides for the situation where a message may
be published by an application using a subject which has no subscribers. In this instance
the message data is discarded.

• There are many publish/subscribe products available in the marketplace today. MQ
publish/subscribe differentiates itself by providing support for the publish/subscribe
model and combining it with the exactly once delivery model of MQ message/queuing.

What is a Queue Manager?

Kernel

Message
Moving

Utilities
Command Server

Listener
Channel Initiator
Trigger Monitor

Windows ExplorerMQ API

Put Get

Local
queuing

PubSub
Engine

What is a Queue Manager?

• A queue manager may - generally - be thought of as 3 components:

• The Kernel is the part of the queue manager that understands how to implement the MQ APIs. Given
that the APIs are common across the queue manager family, it stands to reason that the Kernel is
mostly common code across the set of queue managers. (The primary exception to this is the z/OS
queue manager where the same functions are implemented differently to support the same APIs).

• The Local Queuing component is the part of the queue manager responsible for interacting with the
local operating system. It manages memory, the file system and any operating system primitives
such as timers, signals, etc. This component insulates the Kernel from any considerations of how the
underlying operating system provides services and so enables the Kernel to be operating system
independent.

• The Message Moving component is responsible for interacting with other queue managers and with
MQI clients. For environments where all of the message queuing activity is local to a system then
this component is unused - though this is a very rare case.

• The message moving functions are provided by specialised MQ applications, called Message hannel
Agents.

Local and Cross-System Communication
with WMQ

Program C
QM 2

Messaging

 and

Queuing

Program A Program B
QM 1

Messaging

 and

Queuing

MQI MQI
Put Q1 Get Q1

Q1
Q2

Put Q2 Get Q2

QM 2 XmitQ

TCP/IP, APPC etc

Channel

Cross-System Communication with WebSphere
MQ

• In the diagram we see Program A sending messages to two other programs.

• To Program B: in this case the actual physical queue that both applications
access are the same. This therefore does not require any network
communication.

• To Program C: in this case Program A wants to put a message to queue Q2 on
Queue Manager QM2. It can't do this directly without requiring that the network
and QM2 Queue Managers are available so instead the message is put to a
'holding' queue called a transmission queue. Asynchronously, another part of
WebSphere MQ called a channel will read this transmission queue and deliver
any messages to the queues on QM2.

• Any number of applications running on QM1 can send messages to QM2 via
the same transmission queue and channel.

What is an MQ Client?

ApplicationServer
Model

MQ Server
Library

MQ
Server

Network
Communications

Client
Model

MQ
Server

Inter process
Communications

local or bindings mode

Application

MQ Client
Library

What is an MQ Client?

• WebSphere MQ clients provide a low cost, low resource mechanism to gain access to MQ facilities.
The client provides a remote API facility, allowing an WebSphere MQ application to run on a
machine that does not run a queue manager.

• Each MQ API command is passed to a Server queue manager where a proxy executes the required
API command. The connection between client and server is entirely synchronous providing an 'rpc-
like' mechanism - though NO regular (well-known) rpc mechanism is used !

• The client machine does not own any MQ resources - all resources are held by the Server machine.
Thus, if local queuing capability is required then a server (rather than a client) must be used.

• The WebSphere MQ Client support is part of the WebSphere MQ product that can be installed and
used separately from the MQ server. It provides a set of libraries which can be linked with your
applications to provide access to WebSphere MQ queues without requiring the application to run on
the same machine as the queues.

• Generally speaking an application is linked either with the client libraries or with the server libraries
(often called ‘local’ or ‘bindings’ mode). In bindings mode the application communicates with the
Queue Manager via an inter-process communications link of some kind. In client mode the
application communicates via a network connection. However, as can be seen from the diagram, the
two models are logically equivalent. For this reason the functionality provided at the client is almost
identical to that provided by local applications.

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

• Broad support for:
• programming languages, messaging interfaces, application

environments and OS platforms.

HP-UX Windows zLinux Solaris AIX OS/400 NSS OVMS

MQI C, RPG, COBOL

IBM de facto

zOS Linux

WebSphere MQ

Programming API

MQI C++, Java, C#

OO MQI

JMS (Java)

Industry standard

XMS (C/C++,C#)

IBM standard

.NET (WCF)REST (HTTP)

Microsoft Web

Programming API

• One of WebSphere MQ key strengths is its breadth. It can
run on virtually any commercially available platform and is
accessible through a wide number of programming
languages and API.

• The MQ Interface (MQI) is the defacto API for MQ,
providing simple common access across all platforms.
Standards based interface such as JMS, and its IBM
equivalent for C, C++ and .NET, XMS are also available.

The MQ API (MQI)

QM1

MQI C, RPG, COBOL

IBM de facto

Connection

MQCONN(X)

MQDISC

Resource Use

MQOPEN

MQCLOSE

Messages

MQPUT(1)

MQGET

MQCONN
(QM1)

MQOPEN
(APP.Q for PUT)

MQPUT

MQCLOSE

MQDISC

APP.Q

Sending Application

MQCONN
(QM1)

MQOPEN
(APP.Q for GET)

MQGET

MQCLOSE

MQDISC

Receiving Application

The MQ API (MQI)

• The most common verbs are MQOPEN, MQCLOSE, MQPUT and MQGET which are
concerned with the processing of messages on queues. The first example shows an
application putting a message to a queue and another getting the message off the queue.
We refer to this as the Point-to-Point application model. The second example shows an
application publishing a message to a topic and another subscribing to messages about
that topic. We refer to this as the Publish/Subscribe application model.

• There are many, many options associated with these verbs. However, in general, most of
these options may be left to take their default values - and MQ provides a set of default
structures to allow for easy assignment of these default values.

• There are 24 verbs in total in the WebSphere MQ API, known as the MQI. We have briefly
illustrated the most common ones. The rest have less frequent use and we have
summarised them in a table.

• To use the MQ verbs in your application you link with the MQ library provided with MQ,
which will send your call to the MQ queue manager to process.

The MQ API (MQI) – Publish/Subscribe

QM1

MQI C, RPG, COBOL

IBM de facto

Connection

MQCONN(X)

MQDISC

Resource Use

MQOPEN

MQSUB

MQCLOSE

Messages

MQPUT(1)

MQGET

MQCONN
(QM1)

MQOPEN
(“Price/Fruit”)

MQPUT

MQCLOSE

MQDISC

Sending Application

MQCONN
(QM1)

MQSUB
(“Price/Fruit”)

MQGET

MQCLOSE

MQDISC

Receiving Application

Price

Fruit

The MQ API (MQI) – Summary of all verbs

MQI C, RPG, COBOL

IBM de facto

Connection

MQCONN

MQCONNX

MQCTL

MQDISC

Object attributes

MQINQ

MQSET

Application

MQ
Library

MQ
Queue Manager

Call Queue manager

Message Properties

MQCRTMH

MQCLTMH

MQSETMP

MQINQMP

MQDLTMP

MQMHBUF/MQBUFMH

Resource Use

MQOPEN

MQSUB

MQSUBRQ

MQCLOSE

Messages

MQPUT

MQPUT1

MQGET

MQCB

Transactions

MQBEGIN

MQCMIT

MQBACK

Separate
Session

The MQ API continued

• Intentionally left blank

Java Message Service (JMS) and XMS

• JMS is the standard Java API for messaging
• Part of Java 2 Enterprise Edition 1.3 and later

• Used by WebSphere Application Server
• Point-to-point and Publish/subscribe messaging domains
• Enables greater application portability between messaging

providers
• Vendor-independent Messaging API in Java
• Specification owned by Oracle and managed by The Java

Community Process
• Expert Group includes IBM

• IBM Message Service Clients (XMS) renders a JMS-like API in
non-Java languages

• (Almost) full compatibility with JMS 1.1 API
• Full interoperability with IBM JMS implementations on WMQ and

WPM
• Shared administered objects in JNDI with JMS
• Current implementations include: C, C++ and .NET

Separate
Session

Standards based JMS 1.1 / XMS API

• JMS is part of the J2EE specification and is supported by all J2EE compliant
applications servers including; WAS, WebLogic etc. If you are working in Java
or a J2EE environment inside an app. server, then you will almost certainly use
JMS to access your messaging infrastructure

• So far we’ve been looking at point to point queue based messaging. JMS can
also offer the ability to do publish/subscribe messaging by using a pub/sub
engine (broker) built into WebSphere MQ.

• JMS 1.1 is the current version of the standard and is fully supported by MQ.
• It simplifies programming – providing simple to use Pub/Sub messaging in

addition to point-to-point, although there are many similarities with the MQI
(Connection = MQCONN(), Session = UOW)

• XMS syntactically the same as JMS V1.1, but for C, C++ and C#. It offers
good interoperability between JMS & non-Java applications, and they share
administration models – it is ideal for sending message to JMS application
running in an App Server

WMQ Custom Channel for WCF

• Windows Communication Foundation (WCF) underpins Web services and Messaging in .NET
3

• Built-in Transports e.g. MSMQ, HTTP(S), Named Pipes, TCP/IP, etc.

• Transports can be extended with ‘custom channels’

• Allows alternative transports (like MQ) to be slotted into WCF
seamlessly

• Primary focus is for service orientated architectures

WMQ

Q

Message
Encoder

WMQ
Transport

Protocols..

WCF Client
Application

WCF Channel Stack

WCF Services Layer

Message
Encoder

WMQ
Transport

Protocols..

WCF Service
Application

WCF Channel Stack

WCF Services Layer

Separate
Session

WMQ Custom Channel for WCF
• Initially released on Alphaworks in 2007, the WMQ Custom Channel for

WCF is now available in WMQ v7.0.1.

• Its primary role is for use as a transport for web services, interoperating
with clients and services hosted in WCF, WAS, CICS, Axis and .NET
(.asmx)

• Integrates seamlessly with the built-in WCF channels provided by
Microsoft and so shares the same tooling such as the svcutil.exe client
proxy generator.

• Supports both one-way (fire and forget) and request-reply message
exchange patterns.

Key features of the WebSphere MQ Bridge for HTTP -
– Maps URIs to queues and topics

– Enables MQPUT and MQGET from

– Web Browser

– Lightweight client

 Alternative implementation as SupportPac MA94

WMQ HTTP Bridge
Servlet

WMQ
JCA +

JMS

http://mq.com:1415/msg/

queues/myQ

topics/stocks/IBM

HTTP: POST /
GET / DELETE

libwww

Web
Browsers

Javascript
AJAX

HTTP
clients

JEE Application
Server

Java

SVRCONN
CHANNEL

WMQ Bindings
Connection

WMQ JMS
client

connection

Queue Manager

HTTP Connectivity to WMQ
Separate
Session

HTTP Connectivity to WMQ
• The first goal of the HTTP feature (originally SupportPac MA0Y) is to extend the reach of WMQ applications to more

environments such as web browsers. This will give Rich Internet Applications simplified access to the Enterprise.
Eliminating the WMQ client reduces the cost of application deployment, though this is not a complete replacement
for the WMQ client

• It is missing many MQI features and does not offer transactionality, assured
delivery etc.

• But in many cases where applications have resend logic and check for duplicates it
will be good enough

• The API is modelled after REST ("Representational State Transfer") principles. REST offers a different integration
style to WS-* standards based web services. Qualities of service are sacrificed for simplicity and scalability to keep
barriers-to-entry low. REST APIs are typically simple and can be used spontaneously and incrementally – for
example in Web 2.0 mash-ups. The HTTP/WMQ API is largely based on REST, though it has some quirks. For
example this component transfers message representations, but messages are not ideal REST resources

• They do not necessarily have a unique identifier, and so cannot be addressed
individually

• Not generally amenable to caching etc. because they must be delivered only once
• They are very transient

• It is a stateless / connectionless API with one HTTP verb corresponding to one WMQ operation

• HTTP headers = Message headers
• request headers (get and put options) – wait, requires-headers
• entity headers (MQMD options) – priority, expiry, timestamp, persistence, msgId,

correlId, replyTo
• HTTP request payload = Message body as either text or binary

• No client libraries are provided – apps code directly to HTTP verbs using whatever APIs are in the environment.
• REST was described by Roy Fielding in http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

• Intentionally blank

Example application architectures (1)

Program B

Program A
Program B

‘Send and Forget’

Request / Response

Put Invoice-Q Get Invoice-Q

Invoice-Q

Target Queue

Reply-to-Queue

Program A

Example application architectures (1)
• These examples show some of the ways in which MQ queues can be used

and, thereby, shows some of the styles of applications that may benefit from
the use of a message/queuing model.

• 'Send and Forget'
• This style is one where there is no (direct) response required to a message.

The message/queuing layer will guarantee the arrival of the data without the
application having to solicit a response from the receiver.

• Request/Response
• This style is typical of many existing synchronous applications where some

response is required to the data sent. This style of operation works just as well
in an asynchronous environment as in a synchronous one. One difference is
that - in this case - the sender does not have to wait for a response
immediately. It could pick up the response at some later time in its processing.
Although this is also possible with the synchronous style, it is less common.

Example application architectures (2)

Chain

Workflow

Program A Program CProgram B

Program D

Program B

Program C

Program A

Example application architectures (2)

• Chain
• Data does not have to be returned to the originating application. It may

be appropriate to pass a response to some other application for
processing, as illustrated in a chain of applications.

• Workflow
• There may be multiple applications involved in the processing before a

response comes back to the originating application.

• These various modes of interaction may be arbitrarily combined to
provide as complex/sophisticated topology as is necessary to support
a particular application. The loosely coupled nature of the message
queuing model makes it ideal for this style of interaction. Furthermore,
it makes it straightforward to develop applications in an iterative style.

B
Q Mgr 1

Queue 1

Q Mgr 2

B

Example application architectures (3)
– Clustering

Queue 1

Q Mgr 4

Queue 1

B

Q Mgr 3

Queue 1

B

A

Q Mgr 5

Cluster A

Separate
Session

Example application architectures (3) – Clustering

• The final example given here (though not the last
possibility by any means) is MQ Clustering. In order to
enable highly scalable applications, MQ queue managers
provide support for MQ Clusters. In this environment,
there are several copies (or clones) of a particular target
queue and each message is sent to exactly one of the
possible choices.

• WebSphere MQ Cluster support also defines and
manages all MQ resources, such as channels,
automatically and provides automatic notification of failed
or new queue managers in the environment.

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

• Intentionally left blank

WebSphere MQ Transactions

• Message level inclusion/exclusion in unit of work
• Single UoW active per connection at any one time
• WebSphere MQ local units of work

• MQCMIT and MQBACK control the unit of work
• Messages and other resources in a global unit of work

• Managed by a Transaction Manager
• WebSphere Application Server, CICS, IMS, z/OS RRS
• Microsoft Transaction Server
• Any XA or JEE App Server Transaction Manager

• Managed by WebSphere MQ
• WebSphere MQ is an XA Transaction Manager
• MQBEGIN, MQCMIT and MQBACK

control the unit of work

MQI C, RPG, COBOL

IBM de facto

Transactions

MQBEGIN

MQCMIT

MQBACK

WebSphere MQ Transactions

• WebSphere MQ supports logical units of work (UoW) where a set of resource updates
may be considered as an atomic unit - either all of the changes are made or none of the
changes are made. This support is particularly important when using WebSphere MQ in
a commercial environment (it's primary focus) as transactions play a major part in this
arena.

• WebSphere MQ allows messages to be included/excluded from a UoW at the message
level. This differs from some other environments where a UoW starts and all subsequent
actions are included in the UoW. Thus, a set of messages may be considered to be a
UoW. Often, it is necessary to include both MQ messages and some other recoverable
resources (typically database updates) in a UoW. Typically, this has required the use of
some Transaction Monitor and WebSphere MQ works well with CICS and IMS on z/OS
and with any XA compliant Transaction Manager. In situations where a Transaction
Manager product is not available/suitable, WebSphere MQ itself may be used as the
Transaction Manager. This does not mean that WebSphere MQ is transforming itself into
a Transaction Monitor, it is just providing the Transaction Manager aspect of a
Transaction Monitor product.

• The API used in handling transactions differs according to the environment. WebSphere
MQ provides some verbs to handle UoWs. If a Transaction Monitor is used, however, its
UoW verbs are used in place of the MQI.

WebSphere MQ Security

B

A

QMgr 1 QMgr 2

Xmit Q 2

Queue3

Queue 1

Queue 5

Queue 4

Access
Control

Context

Commands

SSL

Exits

Channels

WebSphere MQ Security

• There are several aspects to WebSphere MQ security:

• Control of WebSphere MQ commands
• Access to MQ commands, like creating and starting queue managers, can be controlled

through operating system facilities and also by MQ facilities; it is necessary to be in a
particular authorisation group to be allowed to use these commands.

• Access to Queue Manager objects
• There is an access control component that is provided by the MQ Queue Manager,

called the Object Authority Manager (OAM), which controls access to Queue Manager
objects, particularly queues. The OAM can control access to resources at a very
granular level, allowing access for different actions, such as GET, PUT, INQ, SET, etc.
This access is (generally) based upon group memberships.

• This security service is a pluggable component of MQ. Thus, if the OAM does not meet
the requirements of the environment it is possible to provide a different (or additional)
component. Note that the OAM is used for all queue managers except for the z/OS
queue manager which uses any SAF compliant security manager.

WebSphere MQ Security (contd)

Channel Security (Authentication)
WebSphere MQ 6.0 provides built-in SSL link level security
MQ also provides a number of exit points during the transfer of messages between systems. The key exits

concerned with security are :-

Security Exit : This exit allows for (mutual) authentication of partner systems when they connect to one another.
Message Exit: This exit allows allows for customisation at the message level, allowing individual messages to be

protected, in terms of message integrity, message privacy and non-repudiation

Application Security
This level of security is not implemented directly by the Queue Manager but such facilities may be implemented

at the application level, outside of the direct control of WebSphere MQ.

Extended Security Edition (TAMBI)
Provides end to end security, enabling messages to be encrypted from the time they are PUT by the sending

application to when they are GET by the receiving application, so messages are help encrypted when at rest
on queues as well as when in transit.

For more information on security please see the following sessions
Introduction to WebSphere MQ Security
WebSphere MQ for z/OS Security
WebSphere MQ Security for Distributed Queue Managers
WebSphere MQ Channel Security with SSL

WebSphere MQ Systems Management

Scripting

System Management
 Applications

e.g.
BMC
CA

Landmark
RYO
Tivoli

MQ
Application

WebSphere
MQ Events

Programmable
Command

Format (PCF)

MQ Explorer

Kernel

Moving
Message

Local
Queuing

MQSC

SupportPac
MS0T

Separate
Session

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041

WebSphere MQ Systems Management

• One of the key operational components of any system is management. WebSphere MQ enables
systems management in a number of ways:

• There are facilities provided by the MQ base to enable MQ resources to be managed. There are
'internal' utility programmes (for example, MQSC, the TSO interface for z/OS and the command line
interface for AS/400). There are also documented interfaces, most notably Programmable Command
Format messages which are PUT to a well known queue and are processed accordingly by the
queue manager.

• WebSphere MQ provides events. These events are themselves MQ messages which are PUT (by
the queue manager) to well known queues and provide information on state changes for various
queue manager resources. The format of the event messages is documented. Text based message
logs (and Windows events) are also provided.

• So, WebSphere MQ queue managers provide a set of documented interfaces to allow control and
configuration of resources and to inform external processes of state changes within the queue
manager. These interfaces may be used by any application program. Typically, this occurs in 3 ways:

• There are MQ utilities which make use of these interfaces. Most notably, the MQ Explorer (provided
for Windows and Linux for Intel environments) enables management and configuration of both local
and remote queue managers using PCF messages.

• The majority of the established systems management vendors use the facilities described above to
provide MQ 'personalities' for their products.

• Customers may write their own utilities to provide systems management capabilities within their
organisations. This style often makes use of the messaging APIs to utilise PCF and event
messages. Also scripting languages (most notably PERL) are used to provide systems management
scripts for WebSphere MQ and other environments.

• Transport SOAP messages over a
reliable transport instead of http

• Integrates directly into:
• Axis Web Services environment
• .NET Web Services environment
• WebSphere Application Server

Services environment
• CICS Services environment

• Heterogeneous
• if services interoperate using

HTTP, they will interoperate using
WMQ

• SOAP / JMS Message Format
• Soon to be standardized by W3C

at API level across Vendors
• Sonic, TIBCO, Axis

SOAP and Web Services over
WebSphere MQ

client
app

WMQ
SOAP

Listener

SOAP
Layer

target
object

WMQ

Web Service Client Web Service

HTTP
HTTP
server

HTTP

Deployment of Web Service using WMQ

WMQ
JMS

SOAP
Layer

target
object

client
app

SOAP
Layer

WMQ
SOAP

Sender

SOAP
Layer

WMQ
JMS

Separate
Session

http://www.w3.org/2002/ws/soapjms/
http://www.w3.org/2002/ws/soapjms/

SOAP and Web Services over WebSphere MQ

• If you had a Web service and client, typically they would communicate using HTTP, but
WMQ can be used seamlessly instead.

• The benefits this gives are:
• Improved Quality of service
• Better management of a WMQ network than an HTTP network
• No application changes are required. It is facilitated at deployment time by changing

the URI details. If it works over HTTP, it will work over WMQ (administration)

• The SOAP messages are carried formatted as JMS messages, called SOAP over JMS
and so can interoperate with other compatible IBM products such as WebSphere
Application Server and CICS.

• Other vendors also offer the same ability to carry SOAP messages formatted as JMS,
but at present they do not interoperate, however, the leading vendors are now driving a
standardisation effort which will help.

• This won’t mean that the messages from different vendors will look the same on the
wire, but it will mean that the way that SOAP messages are stored within a JMS
message will be the same i.e. by using the same property names, body types etc.

WebSphere MQ Service Definition
• A Specification which allows MQ applications to be

described as SOA assets using WSDL and URI, in the
same way as web-services. Enabling:
• Inventory and cataloguing in a Service Registry
• Re-use as a services in a composite SOA applications
• Management and tracing with SOA tools
• Impact Analysis

• Tooling to generate Service
Definitions supplied in WebSphere
MQ Explorer.

WebSphere MQ Service Definition
• MQ users have requested guidance from IBM on how they should describe their MQ applications as services for use in service

oriented architectures.

• There has been particular interest in applying this to unmanaged native WMQ applications (i.e. those coded to the MQI - not JMS - and
those running outside of an application server / CICS etc.)

• This will allow applications to:
• Be inventoried, and catalogued in Service Registry. For example, the WSDL description of an application

can be stored in WSRR
• Be managed and traced with SOA tools. which - for example – will be able to monitor the queues

associated with a service
• Be re-used in composite applications. For example, once the MQ service definition has been

implemented by web services tools, it will be possible to drop an MQ application into a composite Web
services application, and the tools will generate the code required to invoke the MQ application

• IBM has creating the MQ service definition specification to address this
• This consists of two documents.

• An IRI specification, which defines :
• The address of a WMQ message destinations i.e. Queues or Topics for use by messaging

applications
• The address of other WMQ resources i.e. Qmgrs, Queues, channels, channel status etc. for use by

admin tools
• A Bindings Specification, which defines :

• Properties which may be used to describe and connect to a WMQ app.
• The mapping of properties to message headers for the construction and interpretation of SOAP and

non-SOAP messages
• Supported message exchange patterns
• A WSDL binding for SOAP/WMQ and non-SOAP/WMQ
• Examples of IRIs, Messages, and WSDL documents

• The specification is published in SupportPac MA94 with tooling to help generate service definitions being available in the WMQ
Explorer since v7.0.0.1

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

WebSphere MQ and the Wider World

• For a messaging engine to be really useful it should allow access to
the messages from many different environments. We have already
discussed MQs programming language and API support but what
about the environments.

• The complexity of overall business applications is increasing every
year as more and more applications are linked together in some way.
WebSphere MQ dramatically reduces an individual applications
complexity by providing a consistent, reliable and transactional
method of communicating between applications from hundreds of
different environments.

• We are now going to look briefly at some of the other WebSphere
Business Integration products that make up the portfolio, and how
WebSphere MQ fits in

Enterprise
Applications

Enterprise
Applications

Mobile
devices

Web
And Portals

Telemetry
Sensors

Multicast
Subscribers

Mobile
devices

Web
And Portals

Telemetry
Sensors

Inbound
Information

Outbound
Information

Event
Monitoring
And Control

Enterprise
Integration
bus,
Web
Services,
Java
Messaging
Services

WebSphere
Message Broker

Internet reach
in a security-rich
environment

Routing

WebSphere Message Broker

• WebSphere Message Broker
• Message transformation (mediations)

• Combine data sources: databases, files, etc.
• Update other data stores: databases, files, etc.

• Content based filtering and routing
• Adapters - SAP, PeopleSoft, ORACLE, Files, e-mail…
• WebSphere Transformation Extender

Separate
Session

WebSphere Message Broker

• WebSphere MQ provides the assured delivery backbone to an
Enterprise Service Bus. The queue managers are message content
agnostic. Consequently, any data may be exchanged between
applications. However, many applications are dependent upon their
data being routed to particular destinations and are dependent upon
particular data formats. So, the fact that applications may exchange
data (via WebSphere MQ and/or WebSphere Adapters) does not solve
all possible problems. For the general case of any to any application
integration, an intermediary is required to handle message routing
issues and to handle (both simple and very complex) message
transformation issues.

• Message Broker provides the function that enables complex message
routing and transformation functions to be encapsulated outside of
applications, in a (logically) central component.

WebSphere MQ

WebSphere MQ Advanced Message Security

 End-to-End Message Security - Secures application data even
before it is passed to MQ

 Extension to base MQ – No changes to existing applications

WebSphere MQ standard security:
Message data can be encrypted in transport
(SSL) but not when it resides in the queues
Authentication is based on Operating System
identifier of local process

Securing the data
and the applications

WebSphere MQ Advanced Message Security

Application A Application
Z

WebSphere MQ Advanced Message Security

Supplements WMQs security features:

+ Assurance that messages have not been
altered in transit

+ Assurance that messages originated from
the expected source

+ Assurance that messages can only be
viewed by intended recipient(s)

+ Administered using queue based policies
created from the WMQ Explorer or
command line tooling.

WebSphere MQ Low Latency Messaging
 Extends the WebSphere MQ messaging family

• New product that provides a messaging transport optimized for low latency,
high-throughput delivery

 Provides low Latency, high-throughput messaging
• Capable of 91 million messages per second
• Less than 30µs latency at high throughput rates
• Traffic control with static & dynamic rate control

 Delivers semi-reliable delivery
• Choice of Multicast and Unicast transport

with range of topology, speed and reliability
characteristics

• Ordered (FIFO) delivery
• Stream failover for high availability

 Filters messages flexibly
• Coarse-grained, topic-based and fine-grained filtering

 Included in WebSphere Front Office for Financial Markets

High-Speed Low-Latency

WebSphere MQ
Low Latency Messaging

WebSphere MQ Telemetry

Petrol
Forecourt

Vehicle

Oil rig

Ret
ail
Stor
e

Medic
al

Pervasive
Device

Sensor
e.g.

RFID

Enterprise

Smartphone
s

• Queue Manager extension supporting mass

connectivity for smart devices to the enterprise

• Utilises MQTT protocol - a lightweight,

public, low bandwidth messaging protocol

for scenarios where enterprise messaging

clients are too big or bandwidth intensive.
• Established for >10 years

• Ideally suited to:
• Fragile / Expensive networks

• “sometimes connected” devices / satellite phones

• Constrained bandwidth
• 2 byte fixed header

• Niche platforms:
• Tiny sensors, personal devices, edge/small servers

• Mass Scalability
• > 50,000 clients per queue manager

WMQ File Transfer Edition

MQ
MQFTE

MQFTE MQFTEMQFTE

MQ MQ

Clients

Servers

MQFTE Eclipse Tooling

MQFTE

MQFTE

MQFTE

MQFTE Eclipse Tooling

Coordination
Queue Manager

 MQ FTE solves problems of auditing, monitoring, scheduling, security …
• Automated bulk data transfer between distributed heterogeneous

systems.
• Capabilities for integrating, managing, and controlling data movement.

 Built on WebSphere MQ
• Assured delivery of data

over MQ backbone
 Simplicity and ease-of-use

• GUI Driven
• WMQ Explorer Integration
• Scheduled, or Triggered

transfers
• Scriptable

 Complements MB File Nodes
 Product page:

• http://www.ibm.com/software/integration/wmq/filetransfer/v7/

Separate
Session

http://www.ibm.com/software/integration/wmq/filetransfer/v7/
http://www.ibm.com/software/integration/wmq/filetransfer/v7/

Tivoli Omegamon and ITCAM

 Range of IBM products for monitoring and managing
• Common core technologies with product-specific integration
• eg Omegamon for Messaging deals with WMQ and Message

Broker
 Enterprise-scale Management with Omegamon

• Much larger environments than the MQ Explorer will handle
• Allows joining of multiple products into single views

• eg there might be a situation only if both WMQ and DB2
show specific issues

 Part of the "extended" WMQ development
team

• Make sure Tivoli can support new features
• WMQ V7 support available

 Monitor SLAs
• Drill down to appropriate product/OS

levels

http://www.ibm.com/developerworks/websphere/downloads

WebSphere MQ Free Trial

Summary

• WebSphere MQ - World leader in messaging technology

• Runs everywhere your applications do

• Simplifies application communication
• From simple connectivity…..
• ….. to complex workload balancing, transformation and

routing

• Provides secure, reliable and high-speed infrastructure

QuestionsQuestions

• Please complete your session evaluation form:

9359 – Simon Gormley

Copyright and Trademarks
© IBM Corporation 2010. All rights reserved. IBM, the
IBM logo, ibm.com and the globe design are
trademarks of International Business Machines
Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.
Other company, product, or service names may be
trademarks or service marks of others.

file:///home/sgormley/Orlando/To Be Uploaded/../../../../../../Documents and Settings/Administrator/Local Settings/Temp/notesEA312D/www.ibm.com/legal/copytrade.shtml
file:///home/sgormley/Orlando/To Be Uploaded/../../../../../../Documents and Settings/Administrator/Local Settings/Temp/notesEA312D/www.ibm.com/legal/copytrade.shtml

	Slide 1
	Agenda
	Business Challenges (1) - Dispersed Business Logic
	Business Challenges (1) - Dispersed business logic
	Business Challenges (2) - Process Resilience
	Slide 6
	Business Challenges (3) - Process Scalability
	Slide 8
	Business Challenges (4) - Process Flexibility
	Slide 10
	Slide 11
	Slide 12
	WebSphere MQ – Key Concepts (1)
	Slide 14
	WebSphere MQ – Key Concepts (2)
	Slide 16
	WebSphere MQ – Key Concepts (3)
	Slide 18
	WebSphere MQ is not a substitute for…!
	Slide 20
	What is a Message?
	Slide 22
	What is a Queue?
	What is a Queue?
	What is a Topic?
	Slide 26
	What is a Topic Tree?
	Slide 28
	Publish/Subscribe in Action
	What is Publish/Subscribe?
	What is a Queue Manager?
	What is a Queue Manager?
	Local and Cross-System Communication with WMQ
	Cross-System Communication with WebSphere MQ
	What is an MQ Client?
	Slide 36
	Slide 37
	Programming API
	Programming API
	The MQ API (MQI)
	The MQ API (MQI)
	The MQ API (MQI) – Publish/Subscribe
	The MQ API (MQI) – Summary of all verbs
	The MQ API continued
	Java Message Service (JMS) and XMS
	Standards based JMS 1.1 / XMS API
	WMQ Custom Channel for WCF
	Slide 48
	HTTP Connectivity to WMQ
	Slide 50
	Slide 51
	Slide 52
	Example application architectures (1)
	Slide 54
	Example application architectures (2)
	Slide 56
	Example application architectures (3) – Clustering
	Slide 58
	Slide 59
	Slide 60
	WebSphere MQ Transactions
	Slide 62
	WebSphere MQ Security
	Slide 64
	WebSphere MQ Security (contd)
	WebSphere MQ Systems Management
	Slide 67
	Slide 68
	SOAP and Web Services over WebSphere MQ
	Slide 70
	WebSphere MQ Service Definition
	Slide 72
	Slide 73
	WebSphere MQ and the Wider World
	WebSphere Message Broker
	Slide 76
	WebSphere MQ Advanced Message Security
	WebSphere MQ Low Latency Messaging
	Slide 79
	MQ FTE solves problems of auditing, monitoring, scheduling, security … Automated bulk data transfer between distributed heterogeneous systems. Capabilities for integrating, managing, and controlling data movement. Built on WebSphere MQ Assured delivery of data over MQ backbone Simplicity and ease-of-use GUI Driven WMQ Explorer Integration Scheduled, or Triggered transfers Scriptable Complements MB File Nodes Product page: http://www.ibm.com/software/integration/wmq/filetransfer/v7/
	Tivoli Omegamon and ITCAM
	WebSphere MQ Free Trial
	Summary
	Questions
	Copyright and Trademarks

